HIGH ORDER BLOCK IMPLICIT MULTI-STEP (HOBIM) METHODS FOR THE SOLUTION OF STIFF ORDINARY DIFFERENTIAL EQUATIONS
نویسندگان
چکیده
منابع مشابه
A Six Step Block Method for Solution of Fourth Order Ordinary Differential Equations
A linear multistep method for solving first order initial value problems of ordinary differential equations is presented in this paper. The approach of collocation approximation is adopted in the derivation of the scheme and then the scheme is applied as simultaneous integrator to first order initial value problems of ordinary differential equations. This implementation strategy is more accurat...
متن کاملImproved linear multi-step methods for stochastic ordinary differential equations
We consider linear multi-step methods for stochastic ordinary differential equations and study their convergence properties for problems with small noise or additive noise. We present schemes where the drift part is approximated by well-known methods for deterministic ordinary differential equations. Previously, we considered Maruyama-type schemes, where only the increments of the driving Wiene...
متن کاملImplicit Two Step Continuous Hybrid Block Methods with Four Off-Steps Points for Solving Stiff Ordinary Differential Equation
In this paper, a self starting two step continuous block hybrid formulae (CBHF) with four Off-step points is developed using collocation and interpolation procedures. The CBHF is then used to produce multiple numerical integrators which are of uniform order and are assembled into a single block matrix equation. These equations are simultaneously applied to provide the approximate solution for t...
متن کاملA Class of Linearly Implicit Numerical Methods for Solving Stiff Ordinary Differential Equations
We introduce ABC-schemes, a new class of linearly implicit one-step methods for numerical integration of stiff ordinary differential equation systems. Formulas of ABC-schemes invoke the Jacobian of differential system similary to the methods of Rosenbrock type, but unlike the latter they include also the square of the Jacobian matrix.
متن کاملAdditive Runge-Kutta Methods for Stiff Ordinary Differential Equations
Certain pairs of Runge-Kutta methods may be used additively to solve a system of n differential equations x' = J(t)x + g(t, x). Pairs of methods, of order p < 4, where one method is semiexplicit and /(-stable and the other method is explicit, are obtained. These methods require the LU factorization of one n X n matrix, and p evaluations of g, in each step. It is shown that such methods have a s...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: International Journal of Pure and Apllied Mathematics
سال: 2014
ISSN: 1311-8080,1314-3395
DOI: 10.12732/ijpam.v96i4.5